3.6 ธาตุกัมมันตรังสี
ในปี ค.ศ. 1896 (พ.ศ.2439) อองตวน อองรีแบ็กเกอเรล
นักวิทยาศาสตร์ชาวฝรั่งเศส พบว่าเมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำไว้กับสารประกอบของยูเรเนียม
ฟิล์มจะมีลักษณะเหมือนถูกแสง และเมื่อทำการทดลองมีสารประกอบของยูเรเนียมชนิดอื่นๆ
ก็ได้ผล เช่นเดียวกัน จึงสรุปว่าน่าจะมีรังสีแผ่ออกมาจากธาตุยูเรเนียม
ต่อมาปีแอร์ และมารี กูรี
ได้ค้นพบว่าธาตุพอโลเนียมเรเดียม และทอเรียม
ก็สามารถแผ่รังสีได้เช่นเดียวกันปรากฎการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่องเช่นนี้เรียกว่า กัมมันตภาพรังสี เป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโซโทปที่ไม่เสถียร
และเรียกธาตุที่มีสมบัติเช่นนี้ว่า ธาตุกัมมันตรังสี
ธาตุกัมมันตรังสีส่วนใหญ่มีเลขอะตอมสูงกว่า 83
แต่มีธาตุกัมมันตรังสีบางชนิดที่มีเลขอะตอมน้อยกว่า 83 หรืออาจเขียน U-238
U-235
Th-232 และ Rn-222 ก็ได้
นอกจากนี้นักวิทยาศาสตร์ยังสังเคราะห์ธาตุกัมมันตรังสีขึ้นเพื่อใช้ประโยชน์ในด้านต่างๆ
ได้อีก
3.6.1 การเกิดกัมมันตภาพรังสี
กัมมันตภาพรังสีเป็นปรากฎการณ์ทางธรรมชาติของสาร
เกิดจากธาตุกัมมันตรังสี เช่น U-238 และ Th-232 แผ่รังสีออกมาตลอดเวลา
ทั้งนี้เพราะนิวเคลียสของธาตุกัมมันตรังสีมีพลังงานสูงมากและไม่เสถียร
จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีบางชนิด
แล้วธาตุเหล่านั้นก็จะเปลี่ยนเป็นธาตุใหม่ ต่อมารัทเทอร์ฟอร์ดได้ศึกษาเพิ่มเติมและแสดงให้เห็นว่ารังสีที่แผ่ออกมาจากธาตุกัมมันตรังสีอาจเป็นรังสีแอลฟา
บีตาหรือแกมมา ที่มีสมบัติแตกต่างกันดังตาราง 3.11
ตาราง 3.11 ชนิดและสมบัติของรังสีบางชนิด
รูป
3.5 ผลของสนามไฟฟ้าต่อรังสีทั้ง 3 ชนิด
3.6.2
การสลายตัวของธาตุกัมมันตรังสี
จากการศึกษาไอโซโทปของธาตุจำนวนมากทำให้ได้ข้อสังเกตว่า
ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสมคือนิวเคลียสที่มีจำนวนนิวตรอนแตกต่างจากจำนวนโปรตอนมากเกินไปจะไม่เสถียร
จึงเกิดการเปลี่ยนแปลงภายในนิวเคลียสแล้วเกิดเป็นนิวเคลียสของธาตุใหม่ที่เสถียรกว่าโดยการแผ่รังสีออกมา
ดังตัวอย่างต่อไปนี้
การแผ่รังสีแอลฟา ส่วนใหญ่เกิดกับนิวเคลียสที่มีและอะตอมสูงกว่า 82 และมีจำนวนนิวตรอนต่อโปรตอนในสัดส่วนที่ไม่เหมาะสม
เมื่อปล่อยรังสีแอลฟาออกมาจะกลายเป็นนิวเคลียสของธาตุใหม่ที่เสถียรซึ่งมีเลขอะตอมลดลง
2 เลขมวลลดลง 4
การแผ่รังสีบีตา
เกิดกับนิวเคลียสที่มีจำนวนนิวตรอนมากกว่าโปรตอน
นิวตรอนในนิวเคลียสจะเปลี่ยนไปเป็นโปรตอนและอิเล็กตรอน
เมื่อปล่อยรังสีบีตาออกมานิวเคลียสใหม่จะมีเลขอะตอมเพิ่มขึ้น 1 เลขมวลยังคงเดิม
การแผ่รังสีแกมมา
เกิดกับไอโซโทปกัมมันตรังสีที่มีพลังงานสูงมาก
หรือไอโซโทปที่สลายตัวให้รังสีแอลฟาหรือบีตา
แต่นิวเคลียสที่เกิดใหม่ยังไม่เสถียรเพราะมีพลังงานสูงจึงเกิดการเปลี่ยนแปลงในนิวเคลียสเพื่อให้มีพลังงานต่ำลงโดยปล่อยพลังงานส่วนเกินออกมาเป็นรังสีแกมมา
3.6.3
ครึ่งชีวิตของธาตุกัมมันตรังสี
ธาตุกัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออมาได้เองตลอดเวลา
ธาตุกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน
ปริมาณการสลายตัวของธาตุกัมมันตรังสีจะบอกเป็น ครึ่งชีวิต ใช้สัญลักษณ์ t_ครึ่งชีวิต หมายถึง ระยะเวลาที่นิวเคลียสของธาตุกัมมันตรังสี
สลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม ไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งๆ
จะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ เช่น Na-24
มีครึ่งชีวิต 15 ชั่วโมง
หมายความว่าถ้าเริ่มต้นมี
Na-24 10 กรัม
นิวเคลียสนี้จะสลายตัวให้รังสีออกมาจนกระทั่งเวลาผ่านไปครบ 15 ชั่วโมง จะมี Na-24 เหลือ 5 กรัม
และเมื่อเวลาผ่านไปอีก 15 ชั่วโมงจะมี Na-24 เหลืออยู่ 2.5 กรัม นั้นคือเวลาผ่านไปทุกๆ 15
ชั่วโมง Na-24 จะสลายตัวไปเหลือเพียงครึ่งหนึ่งของปริมาณเดิมเขียนแสดงได้ดังรูป
3.6
รูป 3.6 แสดงปริมาณของ Na-24 ที่ลดลงครึ่งหนึ่งทุกๆ 15 ชั่วโมง
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้
ตัวอย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด ดังตาราง 3.12
ตาราง 3.12 ตัวอย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด
3.6.4 ปฏิกิริยานิวเคลียร์
ปฏิกิริยาเคมีที่ได้ศึกษามาแล้ว เป็นการเปลี่ยนแปลงที่เกิดขึ้นกับเวเลนซ์อิเล็กตรอนของธาตุที่ทำปฏิกิริยากันทำให้เกิดเป็นสารใหม่ที่มีสมบัติแตกต่างไปจากเดิมและมีพลังงานเกี่ยวข้องไม่มาก
ส่วนปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของธาตุ
อาจเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็ก
จะได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่
รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาล
ซึ่งสามารถนำมาใช้ประโยชน์ได้ ตัวอย่างปฏิกิริยานิวเคลียร์ศึกษาได้ดังนี้
ปฏิกิริยาฟิชชันและปฏิกิริยาฟิวชัน
ในปี พ.ศ. 2482
นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียสของ U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่า
กระบวนการที่นิวเคลียสของธาตุหนักบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า
ปฏิกิริยาฟิชชัน (fission reaction) ธาตุอื่นที่สามารถเกิดปฏิกิริยาฟิชชันได้
เช่น U-238 หรือ Pu-239 การเกิดปฏิกิริยาฟิชชันแต่ละครั้งจะคายพลังงานออกมาจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิด
จึงถือได้ว่าปฏิกิริยาฟิชชันเป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญ นอกจากนี้ปฏิกิริยาฟิชชันยังได้นิวตรอนเกิดขึ้นด้วยถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นๆ
จะเกิดปฏิกิริยาฟิชชันต่อเนื่องไปเรื่อยๆ เรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่ (chain reaction) ดังรูป 3.7
รูป 3.7 แสดงปฏิกิริยาฟิชชันแบบลูกโซ่
ปฏิกิริยาฟิชชันที่เกิดขึ้นภายใต้ภาวะที่เหมาะสมจะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็ว
ทำให้ปฏิกิริยาฟิชชันดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาจำนวนมหาศาล
ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรง
หลักการของการเกิดปฏิกิริยาลูกโซ่เช่นนี้ได้นำมาใช้ในการทำระเบิดปรมาณู
การควบคุมปฏิกิริยาฟิชชันทำได้หลายวิธี เช่น
ควบคุมมวลของสารตั้งต้นให้น้อยลงจนนิวตรอนที่เกิดขึ้นไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้
หรือใช้โลหะแคตเมียมและโบรอนจับนิวตรอนบางส่วนไว้เพื่อลดจำนวนนิวตรอนที่เกิดขึ้นหรือใช้แท่งแกรไฟต์หรือน้ำเพื่อทำให้นิวตรอนเคลื่อนที่ช้าลงปัจจุบันนักวิทยาศาสตร์นำปฏิกิริยาฟิชชันมาใช้ประโยชน์อย่างกว้างขวาง
เช่น ใช้ผลิตไอโซโทปกัมมันตรังสีในเตาปฎิกรณ์ปรมาณูเพื่อใช้ในการเกษตร
การแพทย์และอุตสาหกรรม ใช้ผลิตกระแสไฟฟ้าในโรงไฟฟ้าปรมาณู
กระบวนการนี้เรียกว่า ปฏิกิริยาฟิวชัน ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยาเดียวกับที่เกิดขึ้นบนดวงอาทิตย์ซึ่งเป็นแหล่งพลังงานที่สำคัญของสุริยจักรวาลการเกิดปฏิกิริยาฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากเพื่อเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้ารวมกัน ความร้อนหรือพลังงานจำนวนนี้อาจได้จากปฏิกิริยาฟิชชันซึ่งเปรียบเสมือนเป็นปฏิกิริยาชนวนที่ทำให้เกิดปฏิกิริยาฟิวชัน
ถ้าพลังงานนิวเคลียร์ที่ปล่อยออกมาจากปฏิกิริยาฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆ
และต่อเนื่องกัน
จะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ปฏิกิริยาฟิวชันมีข้อได้เปรียบกว่าปฏิกิริยาฟิชชันหลายประการกล่าวคือ
คายพลังงานออกมามาก สารตั้งต้นของปฏิกิริยาฟิวชันหาได้ง่ายและมีปริมาณมาก
นอกจากนี้ผลิตภัณฑ์ที่เกิดจากปฏิกิริยาฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่าผลิตภัณฑ์จากปฏิกิริยาฟิชชัน
3.6.5
การตรวจสอบสารกัมมันตรังสีและเทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
รังสีทำให้โมเลกุลของสารแตกตัวเป็นไอออนได้เป็นผลให้เกิดการเปลี่ยนแปลงที่เซลล์ของสิ่งมีชีวิต
มนุษย์ไม่สามารถมองเห็นรังสีได้ด้วยตาเปล่าจึงต้องมีการตรวจสอบรังสีด้วยวิธีต่างๆ
เช่น การใช้ฟิล์มถ่ายรูปหุ้มสารนั้น และเก็บไว้ในที่มืด
ถ้าฟิล์มที่ล้างแล้วปรากฎสีดำแสดงว่าสารนั้นมีการแผ่รังสีหรือนำสารที่ต้องการตรวจสอบเข้าใกล้สารเรืองแสง
ถ้าเกิดการเรืองแสงขึ้นแสดงว่าสารนั้นมีธาตุกัมมันตรังสีอยู่
แต่การตรวจสอบโดยวิธีที่กล่าวมาแล้วไม่สามารถบอกปริมาณของรังสีได้
ถ้าต้องการทราบปริมาณรังสีต้องใช้เครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์
ซึ่งประกอบด้วยหัววัดรังสีและมิเตอร์ที่มีหน้าปัดบอกปริมาณรังสี ดังรูป 3.8
รูป 3.8 เครื่องไกเกอร์
มูลเลอร์ เคาน์เตอร์
การทำงานของท่อวัดในเครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์
อธิบายได้ว่าเมื่อรังสีผ่านเข้าทางช่องรับรังสีจะชนกับอะตอมของแก๊สอาร์กอนที่บรรจุอยู่ในกระบอก
ทำให้อิเล็กตรอนหลุดจากอะตอมเกิดเป็น Ar จึงเกิดความต่างศักย์ระหว่างประจุบวกกับประจุลลบ ของขั้วไฟฟ้าในหัววัดรังสี ซึ่งอ่านค่าความต่างศักย์ได้จากเข็มบนหน้าปัด
ค่าที่อ่านได้จะมากหรือน้อยขึ้นอยู่กับปริมาณของรังสีที่จะทำให้ Ar กลายเป็น Ar บวก
สารกัมมันตรังสีแต่ละสารมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกัน
การนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน ดังตัวอย่าง
ด้านธรณีวิทยา
ใช้คาร์บอน -14 ซึ่งมีครึ่งชีวิต
5730 ปี หาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่น ไม้ กระดูก
หรือสารอินทรีย์อื่นๆ
การหาอายุวัตถุโบราณโดยการวัดปริมาณของคาร์บอน -14 อธิบายได้ว่าในบรรยากาศมีคาร์บอน -14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
ด้านการแพทย์ ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆ
ในร่างกาย โดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อย
จากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆ
เช่น ให้ดื่มสารละลายไอโอดีน -131 แล้วติดตามดูความผิดปกติของต่อมไทรอยด์ใช้ไอโอดีน
-132 ติดตามดูภาพสมอง ฉีดโซเดียม -24
เข้าเส้นเลือดโดยตรงเพื่อดูระบบการไหลเวียนของเลือดรับประทานเทคนีเชียม-99 เมื่อต้องการดูภาพหัวใจ ตับ ปอด
นอกจากนี้แพทย์ยังใช้ไอโซโทปกัมมันตรังสีรักษาโรคโดยตรง เช่น ใช้โคบอลต์ -60 หรือเรเดียม -226
ในการรักษาโรคมะเร็ง
ด้านเกษตรกรรม
ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืช
โดยเริ่มต้นจากการดูดซึมที่รากจนถึงการคายออกที่ใบหรือจำนวนแร่ธาตุที่พืชสะสมไว้ที่ใบ
เช่น ใช้ฟอสฟอรัส -32
จำนวนเล็กน้อยผสมกับฟอสฟอรัสที่ไม่มีรังสีเพื่อทำปุ๋ย แล้วใช้เครื่องไกเกอร์
มูลเลอร์ เคาน์เตอร์
ตรวจวัดรังสีที่ใบของพืชใช้รังสีเพื่อการปรับปรุงเมล็ดพันธุ์พืชให้ได้พันธุกรรมตามต้องการโดยการนำเมล็ดพันธุ์พืชมาอาบรังสีนิวตรอนในปริมาณและระยะเวลาที่เหมาะสมจะทำให้เกิดการกลายพันธุ์ได้
ด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่าง เช่น
ใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวโดยผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อ
แล้วติดตามการแผ่รังสีด้วยเครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ ถ้าบริเวณใดที่เครื่องมีสัญญาณจำนวนนับมากที่สุดแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น
ใช้วัดความหนาของวัตถุเนื่องจากรังสีแต่ละชนิดทะลุวัตถุได้ดีไม่เท่ากัน
ดังนั้นเมื่อผ่านรังสีไปยังแผ่นวัตถุต่างๆ เช่น โลหะ กระดาษ พลาสติก
แล้ววัดความสามารถในการดูดซับรังสีของวัตถุนั้นด้วยเครื่องไกเกอร์ มูลเลอร์
เคาน์เตอร์ เปรียบเทียบจำนวนนับกับตารางข้อมูลก็จะทำให้ทราบความหนาของวัตถุได้
การเก็บถนอมอาหาร ใช้โคบอลต์ -60
ซึ่งจะให้รังสีแกมมาที่ไม่มีผลตกค้างและรังสีจะทำลายแบคทีเรียจึงช่วยเก็บรักษาอาหารไว้ได้นานหลายวันหลังจากการผ่านรังสีเข้าไปในอาหารแล้ว
VDO เรื่องธาตุกัมมันตรังสี
VDO เรื่องธาตุกัมมันตรังสี
ไม่มีความคิดเห็น:
แสดงความคิดเห็น